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Tsallis dynamics using the Nose´-Hoover approach
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On the basis of the Nose´-Hoover method, we developed a deterministic algorithm that produces an arbitrary
probability density. An ordinary differential equation in the algorithm can realize the Tsallis distribution
density. The Tsallis distribution has been considered a candidate of a distribution that represents a physical
system in a heat bath. The Tsallis distribution density employed in this algorithm is defined using a full energy
function form E(x,p), along with the Tsallis indexq>1. Using the current equation, numerical simulations
were performed for simple systems and the Tsallis distributions were observed.
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I. INTRODUCTION

Since Tsallis’s proposal@1#, Tsallis’s statistics has bee
studied extensively. Research of its fundamental aspect
applications to various areas have been done@2#. Tsallis sta-
tistics is based on the Tsallis entropy, which is characteri
by nonextensivity in contrast to the extensivity in the tra
tional Boltzmann-Shannon~BS! entropy. Tsallis distribution
is obtained by extremization of the Tsallis entropy und
some constraints~normalization condition and expectatio
values for some physical variables!. Recently, it has been
shown @3–6# that the canonical ensemble theory deriv
from microcanonical ensemble is not unique and that
Tsallis statistics can be derived. Namely, distribution rep
senting a subsystem in a closed total system is not limite
the Boltzmann-Gibbs~BG! distribution ~which is character-
ized by the maximum entropy principle for the BS entrop!,
but can be realized by the Tsallis distribution. This fact h
been considered as one of the remarkable features of
Tsallis’s nonextensive statistics. Furthermore, it has been
ported@7# that the explanation in view of the Tsallis’s stati
tics is possible for certain physical phenomena that are
tractable by the traditional BG extensive statistics.

The Tsallis distribution approaches the BG distribution
the Tsallis indexq tends to 1. Nose´ and Hoover proposed
deterministic equation that represents a system constru
by adding ~only! one degree of freedom to an objectiv
physical system, and they showed that the equation can
alize the BG distribution@8,9#. From this method, numerica
simulations of the physical system in a heat bath can
done, in a deterministic way, without using numerous
grees of freedom to treat the heat bath, and knowledge o
canonical ensemble system has been intensively increa
Andricioaei and Straub@10# proposed a molecular dynamic
~MD! and a Monte Carlo method for realizing the Tsal
distribution, and they showed the efficiency by its applic
tion to chemical systems. They dealt with Tsallis distributi
represented by coordinate variablesx[(x1 ,...,xn) @i.e., po-
tential energyU(x) is used for energy for defining the dis
tribution# along with the Tsallis indexq>1. Their MD
method is based on the Newton equation and its ability
effective sampling of states in chemical systems has b
shown@11#. The method proposed by Plastino and Anten
1063-651X/2002/65~2!/026105~5!/$20.00 65 0261
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odo @12# is a deterministic method based on the work
Kusnezov, Bulgac, and Bauer@13#, and it can generate th
Tsallis distribution represented by both coordinate variab
x and momentum variablesp @i.e., not only the potential
energyU(x), but also the kinetic energyK(p) are used for
defining the distribution#. Successful results using th
method for the index range 0,q<1 ~their primary concern
is in ‘‘superextensive’’ region!, which is obtained by realiz-
ing the required ‘‘Tsallis cut off condition,’’ were reported
but a numerical overflow problem was pointed out f
q.1.

Our goal is~1! to obtain a deterministic equation that ca
realize the Tsallis distribution, which has been considere
candidate of a distribution that represents a physical sys
in a heat bath, and~2! to enable stable numerical simulation
using the above equation for such a physical system. In c
trast to the previous methods, we treat Tsallis distribut
represented by variables~x, p! with the indexq>1. Physical
phenomena were studied in relation to the Tsallis distribut
with index q.1 ~‘‘subextensive’’ region! @2# for the Lévy
flight @14#, granular matter@15#, and fully developed turbu-
lence@16#, and the efficiencies of the Tsallis statistics we
reported.

For our purpose, we propose an ordinary different
equation~ODE! that produces the Tsallis distribution, on th
basis of the Nose´-Hoover ~NH! equation, which is an ODE
that can realize the BG distribution. We first introduced
‘‘density dynamics’’ to clarify the concept that distributio
density is realized by a giving density function and a cor
sponding vector field. We then constructed an ODE to ful
the density dynamics, so that an arbitrary density funct
was realized under ergodic assumption~Sec. II!. Accord-
ingly, arbitrary distribution density derived from canonic
ensemble theory is produced, when the density is given
smooth function. In Sec. III, we applied this dynamics to t
Tsallis distribution density and constructed an ODE for t
distribution. The validity of realization for the distributio
was examined in numerical simulations using simple syste
in Sec. IV. Section V summarizes the results of our study

II. DENSITY DYNAMICS

On the basis of the Nose´-Hoover method, we construct
density dynamics that enables realization of an arbitrary d
sity.
©2002 The American Physical Society05-1
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For a density, suppose that an arbitrary density functior
~that is smooth, positive, and integrable! defined on a domain
V in RN is given. Regarding a dynamics, consider an O
that has an invariant densityr. That is, givenr becomes the
density~with respect to Lebesgue measuredv on RN! of an
invariant measure for the flow generated by an ODE

v̇5X~v!, ~1!

where X:RN.V→RN is assumed to be smooth and com
plete. From a generalized Liouville’s theorem, it is sufficie
that the vector fieldX satisfies the Liouville equation@17#

div rX50. ~2!

Then, by Birkhoff’s individual ergodic theorem@18#, the rate
of sojourn time into an areaA,V for a solutiont°v(t) of
ODE ~1! has a long-time limit value, for almost every initia
point by the measurerdv. Further, if the flow is ergodic
with respect to the measurerdv, then for almost every
point, the value is constant and

lim
t→`

1

t E
0

t

xA„v~ t !…dt5E
V

xA~v!r~v!dvY E
V

r~v!dv

5const3E
A
r~v!dv, ~3!

where

xA :V→R,v°H 1, for vPA

0, otherwise

holds. Namely, probability density regarding realization
point vPV is interpreted to be proportional to the give
valuer~v!. In the sense that an arbitrary density can be
alized, we call (r,X), a doublet of objective densityr and a
corresponding fieldX, density dynamics.

A field X that satisfies Eq.~2! is not unique. The ‘‘Nose´-
Hoover field’’

XNH :v[~x,p,z!°~p,2“U~x!2zp,~ ipi22nT!/Q!
~4!

has been extensively studied including related ergodic p
erty @19–21#, and gives simple and powerful instruction
our trial of construction of a fieldX. In Eq. ~4!, x
[(x1 ,...,xn), p[(p1 ,...,pn), and U(x) represent coordi-
nates, momenta, and potential energy of a physical sys
respectively,zPR is a variable introduced to control a tem
perature of the physical system toT.0, andQ is a positive
parameter@8,9,22# ~we put all masses and Boltzmann’s co
stant are unity!. An approach inspired by the Nose´-Hoover
field leads to the following ODE described by intendedX
~for simplicity, let V[RN[R2n11!:

ẋi5Dpi
Q~v!, i 51,...,n,

ṗi52Dxi
Q~v!2DzQ~v!pi , i 51,...,n, ~5!

ż5(
j 51

n

Dpj
Q~v!pj2n,
02610
t

r
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m,

where the function is defined by

Q52 ln r:V→R, ~6!

and Dxi
Q(v), Dpi

Q(v), and DzQ(v) denote the partial

derivative ofQ at pointv[(x,p,z) with respect toxi , pi ,
and z, respectively. The fieldX becomes smooth and th
Liouville equation~2! is proved to be satisfied. Thus, Eq.~3!
holds under the ergodic assumption. Equation~3! has been
formulated using an infinite time. A certain condition is r
quired for the functionQ to ensure that all solutions of ODE
~5! are defined for2`,t,` ~viz., completeness ofX!. We
assume the fulfillment of that condition as well as the erg
icity. Note thatQ is considered to be dimensionless, but
can have a physical dimension. To show this, we use
arbitrariness that all properties required forX are invariant
under scalar multiplication forX. Namely, if Eq.~6! is de-
fined using scaled variableQ̄[Q/«[2 ln r, where« is a
constant having the same dimension asQ, and ifX @the right-
hand side of Eq.~5!# formulated usingQ̄ in place ofQ is
multiplied by «, then an ODE represented byQ having the
dimension is obtained.

Equation ~5!, which realizes the density dynamics,
based on the Nose´-Hoover method. This can be understoo
from the fact that Eq. ~5! with the function choice
of Q(x,p,z)[(1/T)@U(x)1 1

2 ipi21(1/2Q)z2# becomes
equivalent to the NH equation. It means ‘‘flow equivalen
@23#, i.e., in this case, the transformations for variab
z°Q21z and for time t°T21t yield the NH equationv̇
5XNH(v).

Here, we give some remarks regarding ergodicity
(r,X) defined by Eqs.~5! and~6!. First, divXÞ0 holds. Sup-
pose that divX(v)50 holds for all pointvPV when Eq.~2!
applies. Thenr becomes an invariant function. That is, for a
arbitrary solution v and arbitrary time t, r„v(t)…
5r„v(0)…. Now, r cannot be almost everywhere consta
~otherwise*RNurudv51`!. Therefore, the system does n
become ergodic. However, since divX52nDzQ holds and
DzQ is proved to be not identically zero from the conditio
for r, div XÞ0 is concluded. Second, fixed points forX,
which can be obstructions to ergodicity, do not exist, sin
n.0. These favorable properties are inherited from the N
equation.

III. TSALLIS DYNAMICS

The method introduced in the preceding section is app
to a density for the Tsallis distribution, and an ODE is d
rived.

We deal with a density@24#

rTsallis~x,p!5@12~12q!bE~x,p!#q/~12q!. ~7!

Here,E(x,p) is a total energy and set to be, for simplicit
the sum of potential energyU(x)>0 and a kinetic energy
K(p)[ 1

2 ipi2. The parameterq is a real number called the
‘‘Tsallis index’’ and only the case forq>1 is treated. The
5-2



e
fo
lis

ro

rg

s

-

l-

ch
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limit of the density asq→1 is rBG(x,p)[exp@2bE(x,p)#,
which is proportional to the traditional BG distribution. Th
density of Eq.~7! becomes a continuous representation
the probability that is derived from extremizing the Tsal
entropy with considering the ‘‘normalizedq-expectation
value’’ of E ~i.e., ‘‘the third choice’’ in Ref.@24#!. Then, the
form of Eq.~7! implies thatb is defined using ‘‘renormalized
temperature’’T8 by b51/T8.0. In Eq. ~7!, normalization
has not yet been done and the form raised to theqth power is
used. This is because we have considered the ‘‘escort p
abilities’’ @7,24# @see Eq.~10! below#. Note that our method
is not restricted in the above density form nor the ene
function form.

We apply the density of Eq.~7! to Eqs.~5! and ~6!. The
density with respect toz component is not givena priori, so

FIG. 1. Tsallis distribution for potential functionU(x)52x2,
Tsallis indexq51.5, andb51. The values are evaluated on ea
mesh of the sizeDx Dp[0.0130.04.~a! Simulation results of his-
togram@left-hand side of Eq.~11!# obtained in integration of Eq.~9!
with t(z)[400z3; ~b! theoretical values@right-hand side of Eq.
~11!#.
02610
r

b-

y

is put rz(z), and a total density is defined as

r~x,p,z![rTsallis~x,p!rz~z!. ~8!

Assume that the conditions forr are met. Then Eq.~5! turns
to be

ẋi5g~x,p!pi , i 51,...,n,

ṗi52g~x,p!DiU~x!2t~z!pi , i ,...,n, ~9!

ż5g~x,p!ipi22n,

where

g~x,p![
qb

12~12q!bE~x,p!
,

t~z![2D ln rz~z!.

As described in Sec. II, when we set a scaling factor a«
[1/b and multiply the right-hand side of Eq.~9! by «, we
have variablesx andp with the ordinary dimensions. In ad
dition, we can see that the equation with a choice ofq[1
and rz(z)[exp@2(b/2Q)z2# yields the pure NH equation
~with z scaled by the parameterQ!.

A long-time average value of any physical variableO rep-
resented by a function ofx and p exists for almost every-
where, and under the ergodic assumption similarly to Eq.~3!,
it equals to a space average with weightrTsallis ~expectation
of O in the Tsallis distribution!. That is,

lim
t→`

1

t E
0

t

O„x~ t !,p~ t !…dt

5E
V

O~x,p!r~v!dvY E
V

r~v!dv

5E
R2n

O~x,p!rTsallis~x,p!

3dx dpY E
R2n

rTsallis~x,p!dx dp. ~10!

Here, we have assumed*VuOrudv,1`. Similarly, for
each point (x̄,p̄) with a suitable areaD( x̄,p̄),R2n that in-
cludes (x̄,p̄), is sufficiently small, and has a constant vo
ume, the following equation holds:

lim
t→`

1

t E
0

t

xD~ x̄,p̄!„x~ t !,p~ t !…dt

5E
D~ x̄,p̄!

rTsallis~x,p!dx dpY E
R2n

rTsallis~x,p!dx dp

'rTsallis~ x̄,p̄!3const, ~11!

where
5-3



n

or

or

,

e-

on-

l
tta

lli

th

n
of

IKUO FUKUDA AND HARUKI NAKAMURA PHYSICAL REVIEW E 65 026105
xD~ x̄,p̄! :R2n→R,~x,p!°H 1, for ~x,p!PD~ x̄,p̄!

0, otherwise.

The left-hand side of Eq.~11! represents the rate of sojour
time into D( x̄,p̄) of t°„x(t),p(t)… obtained from the ODE
~9!. Thus, a probability density regarding realization f
point (x̄,p̄) is proportional torTsallis( x̄,p̄).

IV. NUMERICAL SIMULATION

Realization of the Tsallis distribution via Eq.~9! is exam-
ined in numerical simulations using simple systems.

We tried two potential functions; a harmonic oscillat
and a double well oscillator both in one-dimension,

U~x!52x2, ~12!

FIG. 2. Simulation results of the energy average in the Tsa
distribution for the potential functionU(x)52x2. Time average of
the energy (1/t)*0

t E„x(s),p(s)…ds is shown as a function of time
steps. See Fig. 1 for simulation conditions. Theoretical value of
energy average is 2.0.

FIG. 3. Energy average in the Tsallis distribution for the pote
tial function U(x)52x2. Square symbols indicate the values
simulation results at final time step for each Tsallis indexq. The
curve shows theoretical values@Eq. ~14!#.
02610
U~x!5160x2~x21!2. ~13!

To confirm the validity of Eq.~11! concerning the density
we calculated the left-hand side of Eq.~11! by the histogram
obtained from simulations for each meshD( x̄,p̄) and com-
pared with the theoretical value of the right-hand side. R
garding Eq.~10!, we chose the total energyE as a physical
variable, evaluated the left-hand side of Eq.~10! by time
average (1/t)*0

t E„x(s),p(s)…ds in simulations, and com-
pared with the theoretical value^E& defined by the right-hand
side. For simplicity, all variables were treated as dimensi
less. Parameterb was set as 1.0. We set parameterq within
the range that the value of^E& remains finite. In numerica
integrations of the ODE, the fourth-order Runge-Ku
method with a unit time step ofDt5531024 was used. An
initial value wasx(0)50.1, p(0)51.0, andz(0)50.0.

s

e

-

FIG. 4. Tsallis distribution for the potential functionU(x)
5160x2(x21)2, Tsallis indexq51.8, andb51. The values are
evaluated on each mesh of the sizeDx Dp[0.0130.04. ~a! Simu-
lation results of histogram obtained in integration of Eq.~9! with
t(z)[2000z; ~b! theoretical values.
5-4
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In harmonic oscillator case, simulation results regard
Eq. ~11! ~histogram calculated fromN523109 time steps!
and the theoretical values are shown in Figs. 1~a! and 1~b!,
respectively. Here, we setq51.5. Agreement between them
can be seen. Integration with respect tox andp in Eq. ~10!
yields exactly

^E&5
1

b

1

22q
. ~14!

Thus the theoretical valuêE& in this case is 2.0. Figure 2
shows simulation results for the time average of energy a
function of time steps. It converged to the theoretical val
In addition, simulations were performed for several init
values chosen randomly withinuxu,2.0, upu,10.0, anduzu
,1.0. In these cases, results similar to the above were
tained. We carried out simulations for differentq. Figure 3
shows the result of energy averages for severalq’s. These
simulation results coincide well with the theoretical value

In the NH equation, generating the BG distribution~viz.,
q→1 case! for one-dimensional harmonic oscillator was d
ficult owing to the existence of comparatively wide ‘‘regul
motion’’ regions @19# in V and many extensions of th
method have thereby been proposed to overcome that p
lem @25#. In our study, we observed this difficulty of none
godiclike behavior when we choset(z)[cz ~c.0 is some
constant!. However, the choice oft(z)[cz3 seems to work
well in comparison to the linear case.

Regarding the double well oscillator@Eq. ~13!#, Fig. 4
shows simulation results~a! and the theoretical values~b! for
the distribution. We setq51.8. Simulation results for time
average of energy was 3.388~final time step! and the theo-
retical value^E& is evaluated as about 3.285. Agreement
tween these simulation results and theoretical values ca
seen.

We now remark on computational costs for calculati
energy average. The value^E& is obtained from the integra
of ErTsallis and the contribution of each point~x,p! to ^E& is
02610
g

a
.

l

b-

b-

-
be

E(x,p)rTsallis(x,p)/*R2nErTsallisdx dp. The high energy re-
gion in which each point significantly contributes to^E& is, in
general, larger than that for the BG densityrBG, sincerTsallis
decreases only in power with increasingE, while rBG fol-
lows the exponential decreasing forE. Such a high energy
region for the Tsallis density contains points for whic
rTsallis(x,p) is relatively small. These points constitute a ra
event. If the volume of this rare event is considerably sm
we may ignore the contribution of this event at a small e
pense of the accuracy for̂E&. Suppose the contrary cas
Accurate evaluation for the energy average requires that s
a rare event must be realized with an accurate freque
That is, a statistical fully long time series is generally r
quired. Consequently, such evaluation for the energy ave
in numerical simulation needs a lot of computational time.
our simulations for the above potential functions, this te
dency was found for relatively largeq, for which the corre-
sponding distribution is apart from the BG distribution.

V. CONCLUSION

We have demonstrated a density dynamics and on
basis of the Nose´-Hoover method we have constructed
ODE that enables realization of an arbitrary smooth dens
We have applied this equation to the Tsallis density and
tained an ODE that can realize the Tsallis distribution w
the Tsallis indexq>1. The Tsallis density has been define
by an energy that is defined using both the potential ene
and kinetic energy for a physical system. Realization of
Tsallis distribution was verified in numerical simulations f
simple systems.
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