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Tsallis dynamics using the NoséHoover approach
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On the basis of the Nogdoover method, we developed a deterministic algorithm that produces an arbitrary
probability density. An ordinary differential equation in the algorithm can realize the Tsallis distribution
density. The Tsallis distribution has been considered a candidate of a distribution that represents a physical
system in a heat bath. The Tsallis distribution density employed in this algorithm is defined using a full energy
function formE(x,p), along with the Tsallis indexj=1. Using the current equation, numerical simulations
were performed for simple systems and the Tsallis distributions were observed.
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[. INTRODUCTION odo [12] is a deterministic method based on the work of
Kusnezov, Bulgac, and Baugt3], and it can generate the
Since Tsallis's proposdll], Tsallis's statistics has been Tsallis distribution represented by both coordinate variables

studied extensively. Research of its fundamental aspect angand momentum variablep [i.e., not only the potential
applications to various areas have been d@eTsallis sta- €N€rgyU(x), but also the kinetic energl(p) are used for
tistics is based on the Tsallis entropy, which is characterize@€fining the distributioh Successful results using the
by nonextensivity in contrast to the extensivity in the tradi- "ethod for the md.ex”rang.e<0qﬁllh(thelrbprllma(;ybconc?_r n
tional Boltzmann-Shanno(BS) entropy. Tsallis distribution :i mthzur%erl?i)r((t-:‘%nillys i\llirg%l??c\)lgf L:%mldsiti%nt?l\rl]veere ?’ere;t'gé
is obtained by extremization of the Tsallis entropy underbugt a nur%erical overflow problem was, pointed pout fér
some constraintgnormalization condition and expectation

values for some physical va_nab}esRecentIy, it has be.e” Our goal is(1) to obtain a deterministic equation that can
shown [3—€] that the canonical ensemble theory derived qyjize the Tsallis distribution, which has been considered a
from microcanonical ensemble is not unique and that thgangidate of a distribution that represents a physical system
Tsallis statistics can be derived. Namely, distribution reprejn 3 heat bath, an(®) to enable stable numerical simulations
Senting a Subsystem in a closed total SyStem is not limited tgs|ng the above equation for SUCh a physica' System_ In con-
the Boltzmann-Gibb$BG) distribution (which is character- trast to the previous methods, we treat Tsallis distribution
ized by the maximum entropy principle for the BS entrpy represented by variablés, p) with the indexq=1. Physical
but can be realized by the Tsallis distribution. This fact hagphenomena were studied in relation to the Tsallis distribution
been considered as one of the remarkable features of theith index q>1 (“subextensive” region [2] for the Levy
Tsallis's nonextensive statistics. Furthermore, it has been rdlight [14], granular mattef15], and fully developed turbu-
ported[7] that the explanation in view of the Tsallis’s statis- lence[16], and the efficiencies of the Tsallis statistics were
tics is possible for certain physical phenomena that are inreported.
tractable by the traditional BG extensive statistics. For our purpose, we propose an ordinary differential
The Tsallis distribution approaches the BG distribution asequation(ODE) that produces the Tsallis distribution, on the
the Tsallis indexg tends to 1. Nosend Hoover proposed a basis of the Noséloover (NH) equation, which is an ODE
deterministic equation that represents a system constructdgat can realize the BG distribution. We first introduced a
by adding (only) one degree of freedom to an objective “denglty_ dynamlcs" to cla_rl_fy the concept that distribution
physical system, and they showed that the equation can r&€nsity is realized by a giving density function and a corre-
alize the BG distributiori8.9]. From this method, numerical sponding vector field. We then constructed an ODE to fulfill

simulations of the physical system in a heat bath can pihe dens_ity dynamics, so Fhat an arb_itrary density function
was realized under ergodic assumpti@®ec. ). Accord-

done, in a deterministic way, without using numerous de- : TR ; : .
grees of freedom to treat the heat bath, and knowledge of tH@9ly, arbitrary distribution density derived from canonical

canonical ensemble system has been intensively increaseg/SeMple theory is produced, when the density is given as a
Andricioaei and Straubl0] proposed a molecular dynamics smoqth fungﬂon. In Sec. lll, we applied this dynamics to the
(MD) and a Monte Carlo method for realizing the Tsallis Tsallis distribution density and constructed an ODE for the
distribution, and they showed the efficiency by its app|ica_distribution. The validity of realization for the distribution
tion to chemical systems. They dealt with Tsallis distribution'VaS €xamined in numerical simulations using simple systems
represented by coordinate variables (xy,... x,) [i.e., po- in Sec. IV. Section V summarizes the results of our study.
tential energyU(x) is used for energy for defining the dis-

tribution] along with the Tsallis indexq=1. Their MD

method is based on the Newton equation and its ability of On the basis of the Noddoover method, we construct a
effective sampling of states in chemical systems has beedensity dynamics that enables realization of an arbitrary den-
shown[11]. The method proposed by Plastino and Antene-sity.

II. DENSITY DYNAMICS
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For a density, suppose that an arbitrary density fungtion where the function is defined by
(that is smooth, positive, and integrabtiefined on a domain
QinRNis g_iven._ Regarding a dyr_lami_cs, consider an ODE O=—Inp:Q—R, (6)
that has an invariant density That is, givenp becomes the
density(with respect to Lebesgue measar®@ on RN) of an

invariant measure for the flow generated by an ODE and D, 0(w), Dp6(w), andD O(w) denote the partial
. derivative of® at pointw=(x,p,{) with respect ta;, p;,
w=X(w), D and ¢, respectively. The fieldX becomes smooth and the

Liouville equation(2) is proved to be satisfied. Thus, E&)
holds under the ergodic assumption. Equatinhhas been
formulated using an infinite time. A certain condition is re-
quired for the functior® to ensure that all solutions of ODE
div pX=0. (2) (5) are defined for-co<t<oo (viz., completeness of). We
assume the fulfillment of that condition as well as the ergod-
icity. Note that® is considered to be dimensionless, but it
can have a physical dimension. To show this, we use an
arbitrariness that all properties required ¥rare invariant
under scalar multiplication foK. Namely, if Eq.(6) is de-

fined using scaled variabl®=0/e=—In p, Wheree is a
constant having the same dimensiorBgsand if X [the right-

i 1(~ di= q q hand side of Eq(5)] formulated using® in place of® is
TI_I’EO; OXA(w(t)) t= Q)(A(w)P(w) ® QP(‘”) @ multiplied by &, then an ODE represented I having the
dimension is obtained.

where X:RNDQ—RN is assumed to be smooth and com-
plete. From a generalized Liouville’s theorem, it is sufficient
that the vector fieldX satisfies the Liouville equatiofi7]

Then, by Birkhoff’s individual ergodic theorefi 8], the rate
of sojourn time into an areAC () for a solutiont— w(t) of
ODE (1) has a long-time limit value, for almost every initial
point by the measur@dw. Further, if the flow is ergodic
with respect to the measuredw, then for almost every
point, the value is constant and

Equation (5), which realizes the density dynamics, is
= consix J'Ap(w)dw, (3 pased on the Nosdoover method. This can be understood
from the fact that Eq.(5) with the function choice
where of O(x,p,d)=(1M[U(X)+3|pl>+ (1/2Q) 3] becomes
equivalent to the NH equation. It means “flow equivalent”
1, for weA [23], i.e., in this case, the transformations for variable
0, otherwise {—~Q71¢ and for timet—T~ !t yield the NH equationy
= Xnu(w).
holds. Namely, probability density regarding realization for I—Tgr(e,)we give some remarks regarding ergodicity for
point w e () is interpreted to be proportional to the given (p,X) defined by Eqs(5) and(6). First, divX#0 holds. Sup-
va-llue p(w). In the sense that an arbi.trar-y density can be €phose that di(w)=0 holds for all pointw e Q& when Eq.(2)
alized, we call p,X), a doublet of objective densifyand @  zppjies. Them becomes an invariant function. That is, for an
corresponding fielK, density dynamics o arbitrary solution w and arbitrary time t, p(w(t))

A field X t"hat satisfies Eq(2) is not unique. The “Nose = p(w(0)). Now, p cannot be almost everywhere constant
Hoover field (otherwisef gn|p|dw= + ). Therefore, the system does not
X 0=(x,p,&)—(p,— VU(x) - £p, (| p|2=nT)/Q) become ergodic. However, since div—nD,6 holds and

D,© is proved to be not identically zero from the conditions
) o ) ) for p, divX#0 is concluded. Second, fixed points fixf
has been extensively studied including related ergodic propyhich can be obstructions to ergodicity, do not exist, since

erty [19-21, and gives simple and powerful instruction to n>. These favorable properties are inherited from the NH
our trial of construction of a fieldX. In Eqg. (4), X  equation.

=(Xq,....Xn), P=(P1,..-,Pn), and U(x) represent coordi-

nates, momenta, and potential energy of a physical system,
respectively e R is a variable introduced to control a tem- 1. TSALLIS DYNAMICS
perature of the physical system T0>0, andQ is a positive

XA:QHR,wH‘

> " 4 Bol . The method introduced in the preceding section is applied
paramete{8,9,22 (we put all masses and Boltzmann's con-y, 5 gensity for the Tsallis distribution, and an ODE is de-
stant are unity An approach inspired by the Nostoover rived.

field leads to the following ODE described by intend&d We deal with a density24
(for simplicity, let Q=RN=R2?"*1): @ deal with a density24]

X=DpO(w), 1=L..n, PrealidX,P)=[1= (1= Q) BE(X,p) Y9 (7)

Pi=—Dx0O(0)-DO(w)p;, i=1..n, (5) Here, E(x,p) is a total energy and set to be, for simplicity,

n the sum of potential energy (x)=0 and a kinetic energy

Y _ K(p)=3|/p|?. The parameteq is a real number called the
= D . 2

4 ,Zl pi®(w)p1 " “Tsallis index” and only the case fog=1 is treated. The
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is putp,({), and a total density is defined as

P(X,P, &)= prsaiid X, P) p2({) - (8
.é Assume that the conditions ferare met. Then Eq5) turns
% to be
E
> =g(x,p)pi, i=1,..n,
c
9 - .
3 Pi=—9(x,p)DU)—7(Q)pi, B, (9
3
2

{=g(x,p)|pl>—n,

where

aB
1-(1-q)BE(x,p)’

g(x,p)

7()=-DInp,({).

As described in Sec. Il, when we set a scaling factoe as
=1/B and multiply the right-hand side of E¢9) by ¢, we
have variablex and p with the ordinary dimensions. In ad-
dition, we can see that the equation with a choiceyefl
and p,(¢)=exd —(8/2Q) ¢?] yields the pure NH equation
(with ¢ scaled by the paramet€)).

A long-time average value of any physical variaBleep-
resented by a function of and p exists for almost every-
where, and under the ergodic assumption similarly to(By.
it equals to a space average with weighi, ;s (expectation
of O in the Tsallis distribution That is,

Distribution: theory

e
i~ fo O(x(1),p(t))dt

3-10
FIG. 1. Tsallis distribution for potential functiob(x)=2x2, - JQO(X,p)p(m)dw/ Jﬂp(w)dw
Tsallis indexq=1.5, andB=1. The values are evaluated on each

mesh of the sizé\x Ap=0.01x0.04.(a) Simulation results of his-

togram[left-hand side of Eq(11)] obtained in integration of Eq9) = JRZnO(X'p)PTsauiiX,p)
with 7(£)=400:3; (b) theoretical valuegright-hand side of Eq.
ay].

X dx dp/ fRZnPTsau%X,p)dX dp. (10
limit of the density asg—1 is pgg(X,p)=exd —BE(X,p)],

which is proportional to the traditional BG distribution. The Here, we have assumefl)|Op|dw<+o. Similarly, for
density of Eq.(7) becomes a continuous representation foreach point §,p) with a suitable area (x,p) CR?" that in-
the probability that is derived from extremizing the Tsallis cludes §,p), is sufficiently small, and has a constant vol-
entropy with considering the “normalized-expectation ume, the following equation holds:
value” of E (i.e., “the third choice” in Ref.[24]). Then, the
form of Eq.(7) implies thatg is defined using “renormalized

1~
temperature”T’ by S=1/T'>0. In Eq.(7), normalization I'”:; fo Xaep (X(1),p(t))dt
has not yet been done and the form raised tajthepower is ~
used. This is because we have considered the “escort prob-
abilities” [7,24] [see Eq.(10) below]. Note that our method = L(Xp)PTsaniéXap)dX dp/ fRZnPTsallis(va)dX dp
is not restricted in the above density form nor the energy ’

function form.

We apply the density of Eq7) to Egs.(5) and (6). The
density with respect tg component is not givea priori, so  where

~ PTsaIIis(zﬁ) X const, (11
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FIG. 2. Simulation results of the energy average in the Tsallis
distribution for the potential functiok) (x) =2x2. Time average of
the energy (&) fLE(x(s),p(s))ds is shown as a function of time
steps. See Fig. 1 for simulation conditions. Theoretical value of the
energy average is 2.0.

1, for (x,p)eA(X,p)

XaGip R =R, (X ) 0, otherwise.

The left-hand side of Eq.11) represents the rate of sojourn
time into A(x,p) of t—(x(t),p(t)) obtained from the ODE
(9). Thus, a probability density regarding realization for
point (X,p) is proportional toprsaidX,P)-

Distribution: theory

IV. NUMERICAL SIMULATION

Realization of the Tsallis distribution via E(P) is exam-
ined in numerical simulations using simple systems.

We tried two potential functions; a harmonic oscillator
and a double well oscillator both in one-dimension,

2-10

U(x)=2x?, (12 FIG. 4. Tsallis distribution for the potential functiob(x)

=16M%(x—1)?, Tsallis indexq=1.8, andB=1. The values are
evaluated on each mesh of the sitxe Ap=0.01x0.04.(a) Simu-
lation results of histogram obtained in integration of E®). with
7(£)=2000; (b) theoretical values.

U(x)=160(x—1)2. (13

i To confirm the validity of Eq.(11) concerning the density,

we calculated the left-hand side of H41) by the histogram

. obtained from simulations for each mealix,p) and com-

T pared with the theoretical value of the right-hand side. Re-

garding Eq.(10), we chose the total enerdy as a physical

] variable, evaluated the left-hand side of E0) by time

l average (IME,E(X(S),p(s))ds in simulations, and com-

. . . . . pared with the theoretical valy&) defined by the right-hand

10 12 14 16 18 20 side. For simplicity, all variables were treated as dimension-
4 less. ParameteB was set as 1.0. We set paramejewithin

FIG. 3. Energy average in the Tsallis distribution for the poten-the range that the value ¢E) remains finite. In numerical

tial function U(x)=2x2. Square symbols indicate the values of integrations of the ODE, the fourth-order Runge-Kutta

simulation results at final time step for each Tsallis indexThe ~ Method with a unit time step aft=5x10"* was used. An

curve shows theoretical valuggg. (14)]. initial value wasx(0)=0.1, p(0)=1.0, andZ(0)=0.0.

Energy average
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In harmonic oscillator case, simulation results fegafdin%(x,p)sta“is(x,p)/fRanstamsdx dp. The high energy re-
Eq. (11) (histogram calculated froi=2x10° time steps  gion in which each point significantly contributes(®) is, in
and the theoretical values are shown in Figg) Aind 1b),  general, larger than that for the BG densitys, Sincepreaiis
respectively. Here, we set=1.5. Agreement between them decreases only in power with increasifg while pgg fol-
can be seen. Integration with respectxtandp in Eq. (10) lows the exponential decreasing fir Such a high energy

yields exactly region for the Tsallis density contains points for which
prsanid{ X, p) is relatively small. These points constitute a rare

(E)= 11 (14) event. If the volume of this rare event is considerably small,

B2—q we may ignore the contribution of this event at a small ex-

) S ) . pense of the accuracy fdE). Suppose the contrary case.
Thus the theoretical valuéE) in this case is 2.0. Figure 2 accurate evaluation for the energy average requires that such
shows simulation results for the time average of energy as g rare event must be realized with an accurate frequency.
function of time steps. It converged to the theoretical valueThgat s, a statistical fully long time series is generally re-
values chosen randomly withix| <2.0, [p|<10.0, and|{|  in numerical simulation needs a lot of computational time. In
<1.0. In these cases, results similar to the above were okyyr simulations for the above potential functions, this ten-
tained. We carried out simulations for dlﬁer@]\t Figure 3 dency was found for re|ative|y |argm for which the corre-

shows the result of energy averages for seveisl These  sponding distribution is apart from the BG distribution.
simulation results coincide well with the theoretical values.

In the NH equation, generating the BG distributiiz., V. CONCLUSION
g—1 case for one-dimensional harmonic oscillator was dif- . .
ficult owing to the existence of comparatively wide “regular V& have demonstrated a density dynamics and on the
motion” regions [19] in Q and many extensions of the basis of the Noséloover method we have constructed an

method have thereby been proposed to overcome that proﬁ)-DEhthat ena}_blgs r:_ealizatio_n of anharbitralllr_y Zmoo_th density.
lem [25]. In our study, we observed this difficulty of noner- We have applied this equation to the Tsallis density and .Ob'
godiclike behavior when we chosé¢)=c¢ (c>0 is some tained an ODE that can realize the Tsallis distribution with

constant However, the choice of(Z)=c¢® seems to work the Tsallis inde>q2 1. The Tsallig density has been' defined
well in comparison to the linear case. by an energy that is defined using both the potential energy

Regarding the double well oscillat¢Eq. (13)], Fig. 4 and kinetic energy for a physical system. Realization of the
shows simulation resuli®) and the theoretical valugb) for T_sallls distribution was verified in numerical simulations for
the distribution. We setj=1.8. Simulation results for time SIMPIE systems.
average of energy was 3.38Bnal time step and the theo-
retical value(E) is evaluated as about 3.285. Agreement be-
tween these simulation results and theoretical values can be We thank Dr. Akinori Kidera of Yokohama City Univer-
seen. sity, Dr. Nobuyuki Nakajima of Osaka University, and Dr.

We now remark on computational costs for calculatingYoshifumi Fukunishi of AIST for valuable discussions. We
energy average. The valgg) is obtained from the integral thank the New Energy and Industrial Technology Develop-
of Epsaiis @nd the contribution of each poifit,p) to (E) is  ment Organization for financial support.
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